
PaletteNeRF: Palette-based Appearance Editing of Neural Radiance Fields –
Supplementary Materials

Zhengfei Kuang1*, Fujun Luan2, Sai Bi2, Zhixin Shu2, Gordon Wetzstein1, Kalyan Sunkavalli2

1Stanford University 2Adobe Research
{zhengfei,gordonwz}@stanford.edu {fluan,sbi,zshu,sunkaval}@adobe.com

https://palettenerf.github.io

1. Implementation Details
1.1. Network

Fig. 1 Shows the detailed architecture of our model.
Since we use Instance-NGP [6] to reconstruct the scene
geometry, our decomposition network is also based on
Instance-NGP. It consists of two stages: The first branch
is inherited from the vanilla Instant-NGP’s geometry net-
work, generating the density σ and a geometry feature zσ .
The second stage takes the geometry feature zσ , the posi-
tion x, and the viewing direction d as input, and outputs the
palette-based basis functions and the view-dependent color.
We use an alternative hashing-based encoder in this branch,
since the original encoder is frozen to keep the pre-trained
geometry unchanged. Furthermore, for semantic-guided re-
coloring, the model can be further extended with a semantic
network, which has an identical structure to the geometry
network and generates the semantic feature only.

All our networks are implemented based on the PyTorch
version of Instant-NGP written by Tang et al. [8].

1.2. Training of Decomposition Model

As mentioned in the paper, we calculate the palette
blending weights of image pixels using the method from
Tan et al. [7] as supervision. While the original method em-
ploys spatial information of the pixels (i.e., coordinates), we
do not use them for view consistency issues. To speed up,
we build a 32×32×32 grid on the RGB space and calculate
the weights on the grid nodes, then interpolate the weights
to all image pixels.

We set λs, λsp, λoffset, λsm, λpalette, λweight to 0.1, 0.0002,
0.03, 0.004, 0.001 and 0.05 in all of our experiments. We
load the geometry model from the vanilla Instant-NGP, and
freeze the parameters during the training. For the first 100
epochs, We freeze the palette weights, and linearly decrease

*Parts of this work were done when Zhengfei Kuang was an intern at
Adobe Research.

λweight per epoch to 0.
If the model contains the semantic network, we also add

two losses on the predicted feature maps: a reconstruction
loss defined as the L2 distance to the ground truth maps, and
a smooth loss which is similarly defined as Lsm. They share
the same weights with Lrecon and Lsm.

1.3. Recoloring

Given novel palettes, we first calculate their changes to
the original palettes in the HSV space. Specifically, we cal-
culate the difference between the H value, and the scale of
the S and V values. We then copy these changes to the per-
point soft color cp ∈ [0, 1]Np×3 (i.e., palette color add color
offset) to get c′p. If no semantic guidance is employed, the
model directly outputs c′p. Otherwise, it outputs:

Lerp
(
cp, c

′
p, exp(−

∥f(x)− µf∥2

σf
)

)
, (1)

where f is the learned feature field, µf and σf are the mean
value and variance of the semantic feature controlled by the
user. In practice, the user can select the mean value and
variance through our GUI, which we also show in our sup-
plementary video.

Photorealistic Style Transfer Given a set of correspon-
dences of 3D points and style image pixels, our model
supports photorealistic style transfer by optimizing a trans-
formation of the basis functions. Specifically, the trans-
formation is composed of three types of parameters: The
difference of the radiance function dI ∈ RNp (indepen-
dent for each basis); The difference of the color palettes
dP ∈ RNp×3 ; And the transformation matrices of the color
offsets Rδ ∈ RNp×3×3. With them, we modify the color
composition equation in the paper (Eq. [2]) to:

c(x,d) = s(x,d) +

Np∑
i=1

I ′i(x)ωi(x)
(
P ′

i + δ′i(x)
)
, (2)

1

https://palettenerf.github.io


𝒙 ∈ ℝ!
Position

Hashing-based 
Geometry Encoder

Dim = 32

SH-Based 
View Dir Encoder

Dim = 16

Linear (32, 64) 

ReLU

Linear (64, 16) 

Split (1,15)

𝝈 ∈ ℝ"
Density

Exp

𝒛𝝈 ∈ ℝ$%
Geometry

Feature

𝒛𝝈 ∈ ℝ$%
Geometry Feature

Linear (31, 64) 

𝒅 ∈ ℝ&
View Direction

ReLU

Linear (64, 64) 

ReLU

Linear (64, 3) 

Sigmoid

Cut Grad

Linear (15, 64) 

ReLU

Linear (64, 64) 

ReLU

Linear (64, 3) 

Sigmoid

𝒄𝒅 ∈ [0,1]!
Diffuse 
Color 

𝒔 ∈ [0,1]!
View-Dependent 

Color

𝒙 ∈ ℝ!
Postion

Hashing-based 
Palette Basis Encoder

Dim = 32

Linear (35, 64) 

ELU

Linear (64, 15) 

Cut Grad

SoftPlus SoftPlus

L1 Normalize

𝝎 ∈ 0,1 (!

Blending 
Weights

𝐼 ∈ ℝ"
Radiance

𝜹 ∈ ℝ(!×!
Color 

Offsets

Linear (15, 𝑁*) Linear (15, 𝑁*×3) Linear (15, 1) 

(a) Geometry Network (c) Palette Basis Decomposition Network

Figure 1. Network structure of our model. Components painted with yellow color have trainable parameters. The geometry network’s
parameters are loaded from the pre-trained model and fixed during the training. For details of the encoders, please refer to the original
Instant-NGP [6] paper.

where P ′
i = Pi + dPi, δ

′
i(x) = Rδ

i δi(x), I
′
i(x) =

I(x) + dIi. Two losses are applied for the optimization:
a reconstruction loss defined as the sum of L2 distance be-
tween the updated diffuse colors (i.e., the sum of all basis
colors) and the corresponding style colors of all point-pixel
correspondences, and a regularization loss defined as:

Lreg =

Np∑
i

∥dPi∥2 + ∥Rδ
i (R

δ
i )

T − I∥2. (3)

These two losses are weighted by 1 and 0.1, respectively.
We optimize the parameters for 1000 steps using an Adam
optimizer with a learning rate of 0.001.

Figure 2. Photorealistic style transfer with our GUI. Our system
can optimize a stylized scene given a style image (right top) and
several point-pixel correspondences (right bottom).

Figure 3. Recoloring with our GUI. Our GUI allows users to
select and modify palettes (right bottom) for real-time recoloring.

1.4. Interactive GUI

Our GUI is implemented on the framework of
DearPyGUI [3]. It supports various applications, including
novel view synthesis, intuitive recoloring (with semantic
guidance), photorealistic style transfer, and our additional
appearance editings (e.g., illumination changing). Fig. 3
and Fig. 2 show two examples of our GUI, and we also pro-
vide demos in our supplementary video.

2. Details of User Study
We conduct our user study on the task of palette-based

recoloring and photorealistic style transfer. For recoloring,
we select ten scenes from the LLFF dataset [5], Blender
Dataset [4] and the MipNeRF-360 Dataset [1], and render



two views per scene. We manually edit the palettes per
model per view with the same recoloring target (e.g., chang-
ing the flower’s color to yellow) without limiting the num-
ber of changed palettes. For style transfer, we select four
scenes from the LLFF dataset and assign two style images
for each (8 pairs in total). For each pair, we run all methods
to render a stylized video with the same trajectory.

We compare our method with all baselines for each task
using photorealism questions and view-consistency ques-
tions. In each photorealism question, users are provided
with a reference image (video), an image (video) from our
method and an image (video) from one baseline, and de-
cide which result is more photorealistic. In each view-
consistency question, users are given two views (a video)
generated from our method and two views (a video) gen-
erated from another baseline, and decide which results are
more view-consistent.

3. Additional Experiments
In addition to the evaluations in our paper, we show more

experiment results in this section.

3.1. Comparison with Du et al. [2]

We show another qualitative comparison between our
model and the state-of-the-art palette-based video recolor-
ing method of Du et al. [2]. As shown in Fig 4, the method
of Du et al. performs decently when only editing the plant
and table, but introduces view-inconsistency when editing
the floor and bicycle, too. On the other hand, our results are
view-consistent with all edits. We also show the animated
comparison in our supplementary video.

3.2. Ablation Study on Basis Decomposition

As the supplement of the ablation study in the paper,
we show more qualitative results of the basis color maps in
Fig 7. Our full model achieves the most sparse and 3D rea-
sonable decomposition results compared to other variants.

3.3. Ablation Study on Semantic Feature Compres-
sion

To find the most appropriate dimension of the com-
pressed semantic feature, we evaluate the effects of different
dimensions with three metrics: our model’s inference time,
our model’s training memory cost, and a novel feature dis-
tance error EFD. The feature distance error is given by:

EFD = E
x,y

(

∣∣∥f(x)− f(y)∥2 + ∥f ′(x)− f ′(y)∥2
∣∣

∥f(x)− f(y)∥2
), (4)

where f and f ′ are the original and compressed semantic
feature maps, and x,y is a pair of pixels. This error calcu-
lates the fidelity of the compressed feature. We sample pixel

pairs across the training images multiple times in our exper-
iment to approximate this error. We test various dimensions
on the MipNeRF-360 datasets, and the results are shown in
Fig. 5. Choosing 16 as the feature dimension only brings
minor effects on the features’ fidelity and the model’s effi-
ciency. Choosing 32 as the dimension, however, can cause
an out-of-memory problem with the preload setting (a com-
mon optimization that load all training images to the GPU
before training). Thus we use the dimension of 16 in all
experiments.

Reference Ours Du et al. (Edit 1)
Fr

am
e 

#9
Fr

am
e 

#5
9

Du et al. (Edit 2)

Figure 4. Comparison with Du et al. [2].

2 4 8 16 32
0.0

0.2

0.4

0.6

Er
ro

r /
 T

im
e 

(s
)

FDE / Inference Time
Feature Distance Error
Inference Time

2 4 8 16 32
0

5

10

15

20

25

M
em

or
y 

(G
B

)

Training Memory Cost
Memory w/o Preload
Memory w/ Preload
Out of Memory

Dimension

Figure 5. Ablation study on the semantic feature.

(a) RGB Color (b) Normalized Depth (c) Palette Weight

0

1

Figure 6. Example of our model’s failure case. While the color
of the ceiling is smooth in the image space, our model is affected
by the discontinuous geometry reconstructed by the Instant-NGP
and outputs weight maps with a rough boundary in the highlighted
area.



M
od

el
w

/o
 𝜹

M
od

el
w

/ R
an

do
m
𝓟

M
od

el
w

/o
 ℒ
!"

M
od

el
w

/o
 ℒ
!#

Fu
ll

M
od

el

Figure 7. Ablative study results on basis color maps. Our model trained with randomly initialized palettes (model w/ Random P)
generates bases with inordinate color offsets. Our model trained without color offset(Model w/o δ, and model trained without sparsity loss
(Model w/o Lsp) predicts decomposition results with less sparsity. Our model trained without the smooth loss (Model w/o Lsm) generates
rough segmentation.

4. Limitation
While we carefully design our model to produce clean

and 3D consistent decomposition results, it may produce
rough segmentation in some cases due to the reconstruction
failure of our geometry network. Fig 6 shows an example
of this situation. We believe that our method can be further
improved when built with better geometry.

5. Additional Results
Finally, we show additional qualitative results of our

model. We provide more recoloring results in Fig. 8, Fig. 9

and Fig. 10, and appearance editing results in Fig. 11 and
Fig. 12 . Please refer to our supplementary video for more
animated results.



Reference

B
on

sa
i

Edit #2 Edit #3Edit #1

H
or

ns
Fl

ow
er

R
oo

m

Figure 8. Recoloring results on real datasets.



Reference

B
on

sa
i

Edit #2 Edit #3Edit #1

O
rc

hi
ds

Fe
rn

K
itc

he
n

Figure 9. Recoloring results on real datasets.



Reference Edit #2 Edit #3Edit #1

Le
go

Sh
ip

Fi
cu

s
C

ha
ir

Figure 10. Recoloring results on synthetic datasets.



Le
go

H
or

ns
B

on
sa

i

No 𝜹 Regular 𝜹 Enhanced 𝜹

Figure 11. Qualitative results of color offset editing. For each scene, we show editing results where the color offset is removed (No δ),
unchanged (Regular δ), and enhanced (Enhanced δ).

Fi
cu

s
Fl

ow
er

R
oo

m

No 𝒔 Regular 𝒔 Enhanced 𝒔

Figure 12. Qualitative results of view-dependent color editing. For each scene, we show editing results where the view-dependent color
is removed (No s), unchanged (Regular s), and enhanced (Enhanced s).



References
[1] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.

Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded
anti-aliased neural radiance fields. CVPR, 2022. 2

[2] Zheng-Jun Du, Kai-Xiang Lei, Kun Xu, Jianchao Tan, and
Yotam Gingold. Video recoloring via spatial-temporal geo-
metric palettes. ACM Transactions on Graphics (TOG), 40(4),
Aug. 2021. 3

[3] Jonathan Hoffstadt and Preston Cothren, 2021.
https://github.com/hoffstadt/DearPyGui. 2

[4] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
representing scenes as neural radiance fields for view synthe-
sis. Commun. ACM, 65(1):99–106, 2022. 2

[5] Pooneh Mohaghegh, Rabia Saeed, François Tièche, Alexis
Boegli, and Yves Perriard. Depth camera and electromag-
netic field localization system for iot application: High level,
lightweight data fusion. In ASSE 2021: 2nd Asia Service Sci-
ences and Software Engineering Conference, Macau, 24-26
February, 2021, pages 94–101. ACM, 2021. 2

[6] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM Trans. Graph., 41(4):102:1–
102:15, July 2022. 1, 2

[7] Jianchao Tan, Jose Echevarria, and Yotam Gingold. Effi-
cient palette-based decomposition and recoloring of images
via rgbxy-space geometry. ACM Transactions on Graphics
(TOG), 37(6):262:1–262:10, Dec. 2018. 1

[8] Jiaxiang Tang. Torch-ngp: a pytorch implementation of
instant-ngp, 2022. https://github.com/ashawkey/torch-ngp. 1


	. Implementation Details
	. Network
	. Training of Decomposition Model
	. Recoloring
	. Interactive GUI

	. Details of User Study
	. Additional Experiments
	. Comparison with Du et al. Du:2021:VRS
	. Ablation Study on Basis Decomposition
	. Ablation Study on Semantic Feature Compression

	. Limitation
	. Additional Results

